

Tracer test interpretation

Industry representatives: Prof Mathew Starzak Bryan Barker

©SMRI 2018

Objective

- Provide a robust method of interpreting tracer test data to guide the adjustment of diffuser sprays to provide optimum cane wetting conditions within a cane bed
 - ie. Use experimental data to determine the distance that sprays must be moved to improve operation
- Preferably use a spread sheet to implement method

©SMR 2018 • Test the validity of the target recycle value used (32%) (additional objective)

Counter current extraction

- Sucrose rich shredded cane enters at one end
- A conveyor move cane to other end of diffuser
- Water (imbibition) enters at other

©SMRI

2018

- Water percolates through bed leaching sucrose
- Water is collected and pumped towards the cane entry end of the diffuser
- ∴ Cane moves in one direction and water in other direction achieving counter-current arrangement

Stage juice flows

- The intended collection tray is the direct tray
- Juice returning to the source tray is recycled
- Juice exiting past the direct tray bypasses the stage

Required recycle

- Extraction require contact between juice flowing in bed and cane
- Bed needs to be nearly saturated for maximum extraction
- Imbibition flow rate insufficient to saturate bed

©SMR 2018 Recycle required to increase amount of juice held in bed

©SMRI

2018

Tracer experiment

Stage pump

Cell and transmitter

Diffuser

Tracer experiment

Tracer experiment

- Calibration for each stage
 - Fill each cell with juice from relevant stage sample point
 - Measure conductivity
 - Add 1 gram/litre NaCl to juice from sample point
 - Measure conductivity
 - Gives 2 point calibration in gram/litre for each stage

- Five tray data collection
 - Dissolve 50 kg NaCl in hot water/juice
 - Start data logging
 - Pump/gravity feed solution into suction side of stage pump
 - Wait till conductivities have returned to baseline levels
 - Stop logging

Data preparation

Data preparation Processed curves

Result interpretation – Current methods

Mean residence time

- Method
 - Represent data as cumulative curve
 - Calculate mean residence time using area-moment approach
 - Calculate exit point and recycle
- Comments
 - Sensitive to determining injection point
 - Does not allow for long injection times
 - No noise removal
 - Background variation
 - Mixing
 - Ignores width of spray
 - Spatial information removed

Result interpretation – Current methods

Sum of positive and negative step responses

- Method
 - Approximate injection as sum of positive step and negative step
 - Fit step response model to data
 - Extract dispersion and percolation velocity from model
 - Estimate percolation distance and recycle
- Comments
 - Accommodates long pulses
 - Ignores width of spray
 - Spatial information removed
 - Require estimate of juice entry point

Result interpretation – Current methods

Dispersion model fitting (Love, 1980 ISSCT)

- Method
 - Fit dispersion model solution to data for each stage
 - Extract percolation velocity and dispersion coefficients from curve fit
 - Comments
 - Curve fitting involve function which is an integral complexity
 - Retains spatial information
 - Sometimes has large deviations from data especially when more than three stages used
 - Can be subject to local minima in curve fitting depending on minimisation parameters
 - Can require estimate of entry point
 - Includes spray width
 - Injection time can be accommodate to some extent

Ideal method

- Gives change in position of spray
 - Injection position not required
- Robust in terms of local minima and minimisation starting points

- What should the target recycle be to give optimum (say 90%) wetting of the bed?
- Is the value of 32% valid?

